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FOREWORD .

This report describes the Polar Motions Measurement Study applied research task

done by Honeywell Systems and Research Center for the Air Force Geophysics

Laboratory, under Contract No. F19628-83-C-0103. %

Publication of this report does not constitute approval by the Air Force

Geophysics Laboratory of the findings and/or conclusions contained herein.

This report is published solely to stimulate the free exchange of ideas and

information.
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SECTION 1

INTRODUCTION AND SUMMARY

This 15-month applied research program was aimed at determining the feasibility

of making subarc-second quality measurements of earth crustal deviation and

earth polar axis wander using ring laser gyro (M1G) based systems.

The program comprised analyses of the performance of two selected system

configurations and rate table laser gyro testing. This final report describes

the work done and the results obtained, presents conclusions on the feasibility

of making subarc-second measurements of earth polar axis (EPA)/crustal

deviations, and frames recommendations for further work.

The two configurations selected consisted of a three-axis navigator system,

using three laser gyros, three accelerometers, and compound gimballing" and a

* one-axis system, comprising one laser gyro, two tiltmeters, and indexatirn to

- point the gyro alternately east and west.

The laser gyro selected for both the analyses and the testing phases of this

program was the Honeywell GG1389 gyro. This state-of-the-art gyro is probably

the finest in the world.

Preliminary analysis showed that it is impossible to distinguish earth crustal

*i deviation around the vertical from EPA wander along the east-west axis, using

.' self-contained inertial measurements.

• Preliminary calculations based on GG1389 gyros with computer-driven random

drift reduction showed that, in a kinematically benign environment, combined

. crustal deviation and polar axis east-west wander could be determined with

subarc-second accuracy over less than 24 hr.

0
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Based on these preliminary results, we defined a reasonable performance goal:

determine the 16-hr average value of combined earth crustal deviation and EPA

deviation, within 0.2 arc-sec rms, over a 16-hr period, in a benign

*environment.

Using covariance analysis as needed, a linear error propagation model, and

known and extrapolated component characteristics, our analyses showed that the

simple one-axis system should perform as well as the three-axis navigator

system, and that both could come close to reaching the performance goal. Rate

table tests on Honeywell GG1389 RLGs showed that this gyro's performance is now

almost compatible with the performance goal. The crucial characteristics are

random drift and input axis stability.

The random drift'was about 0.0000450/rt-hr, when operated in the scale-factor

mode (i.e., continuously rotated without dithering). The input axis stability

ranged from 0.004 to 0.04 arc-sec, relative to the gyro body structure, and

from 0.25 to 0.90 arc-sec across removals and remountings of the gyros.

The low random drift performance could be retained when operating in the

dithered mode by using a real-time computer-controlled laser gyro random drift

improvement technique, called CLIC, invented by Honeywell. Although still not

operative under general input rate environments, CLIC will reliably improve

dithered laser gyro random drift under benign environments, down to near

quantum limited performance.

It is reasonable to suppose that careful design of an indexed system should

improve the input axis stability, from the above 0.25 to 0.90 arc-sec

mount/remount value, down towards the 0.04 arc-sec intrinsic value. This could

be achieved by improving the quality of the mounting geometry, and/or by

directly measuring the mounting misalignment and compensating the system

output.

2
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The tiltmeters used in the one-axis system would contribute negligible added

error to that from gyro random drift. Tiltmeters are readily manufactured with

subarc-second resolution and multi-hour stability. In the three-axis

navigator, the accelerometers would make a larger error contribution (it is

more difficult to make ultrasensitive and ultrastable accels than tiltmeters),

but still minor compared to that from the gyros.

Considering the foregoing results and arguments, we conclude that it is

feasible to make subarc-second measurements of combined EPA deviation and earth

crustal rotational displacements, over less than one day, using a RLG-based

system, in a configuration as simple as the one-gyro-plus-two-tiltmeter device.

We recommend that the Air Force Geophysics Laboratory (AFGL) design and build a

one-axis demonstrator unit, as described herein, to be tested by AFGL under

field conditions, as a prelude to designing and building a more elaborate unit

with all features needed to function as an autonomous transportable field model

sensor.
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SECTION 2

PRELIMINARY STUDIES

ASSUMPTIONS

We defined the set of assumptions under which the study would proceed, as

listed below.

o Rigid-earth geography: invariant distances between all surface

features recognized as fixed in the everyday sense. Terrains such as

glaciers, icefloes, etc., excluded. Intercontinental drifts considered

negligible.

o Despite the rigidity as defined above, local short-range twist

deformations occur. These are to be determined to within subarc-second

accuracy, over less than one day.

o Gravity vector at any location is constant, expressed in a geographic

reference frame affixed to the rigid earth.

0 Earth polar spin axis will deviate from nominal orientation, as seen in
2rigid-earth reference frame. This deviation is to be determined with

subarc-second accuracy over less than a day. Polar axis wander during

the measurement period is negligible.

o Crustal twist and polar axis deviation to be determined using a

substantially self-contained device (e.g., without need for star shots,

triangulation, etc.).

0 Benign environment: fixed position, zero velocity, and zero kinematic

acceleration, all specific force is gravitational.

4
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CONFIGURATIONS AND PRINCIPLES OF OPERATION

We selected two system configurations for study. One of these was a

high-precision three-axis inertial navigator, with three RLGs and three

accelerometers. The other was a stripped system, designed to exploit the

advantages of operation under ultra-benign kinematic environment. It consists

of a single gyro, whose input axis lies along nominal east-west, and two

tiltmeters, which measure tilt around the north-south and the east-west axes,

with 1800 indexing around nominal vertical, to enable bias cancellation. The

principle behind both systems is to define earth crustal twist and EPA

deviation in terms of a reference frame defined by the local vertical and the

nominal EPA.

The accels (or tiltmeters) define the local vertical (unit g-vector) as seen in

the body frame of the device. The angle sensor(s) define the total rotation

vector (earth spin + body rate), also as seen in the body frame. North is

defined as lying along the horizontal component of earth spin, which is

nominally of value E*cos(LT), where E is full earth rate (about 150/hr), and LT

is latitude.

Body tilt around the north-south axis through an angle A(NS) will add a spin

component along east-west of value E*sin(LT)*A(NS), comprising the rotated

vertical component of earth spin. This will deflect the total spin vector

east-westwards through an angle of (E*sin(LT)*A(NS))/(E*cos(LT)), =

A(NS)Otan(LT). This is, of course, easily corrected for by using the

north-south tilt angle, A(NS), which is arrived at by interpreting the

accel/tiltmeter readings.

Body rate around the east-west axis of value R(EW) will sum vectorially with

the earth spin vector to produce a total spin vector whose horizontal component

is deviated east/westwards from north, through an angle of R(EW)/(E*cos(LT)).

.m ' .. . t h -o - .-. . , -m . . o -.-, - . . - -. - • * . - " • ' ° ° ° - - - - -* . ° o' .' 'S



It will also rotate the sensed local vertical at rate R(EW) around east-west.

This can be seen in the rate of change of the accel signals, and thus east-west

tilt rate can also be corrected for.

However, deviation in the horizontal component of earth rate cannot be detected

- when using only the g-vector in addition to earth rate. The effect of, say, a

1 arc-sec rotation of the horizontal part of earth rate, from true north to

north + 1 arc-sec east, cannot be distinguished from the effect of a rotation

of the body on which the gyro is mounted, through an angle of 1 arc-sec

counterclockwise around the vertical.

This is the distinguishability problem: how does one determine EPA deviation,

while using the EPA as one ''leg'' of the reference frame in which the

deviation is to be expressed? (The other ''leg" is the local vertical.)

Obviously, the only detectable kind of EPA deviation would be that causing a

change in the angle between the EPA and vertical, i.e., meridional deviation.

East-west deviation would be undetectable.

BASIC ANALYSIS OF SYSTEM OPERATION

Let the earth spin rate vector, including deviation, be denoted:

*= E + d,

where:

a = deviated earth spin rate vector

E = nominal earth spin rate vector

d - deviation vector, whose direction denotes the axis, and whose magnitude

denotes the amount of the spin rate deviation

Let the crustal warp be denoted by a small rotation vector, a, whose direction

represents the axis, and whose magnitude represents the angle of warp. Let the

6
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crustal warp rate be denoted as the rotation rate vector, p. whose direction

represents the axis, and whose magnitude denotes the amount of the warp rate.

Rigid-earth coordinates are defined in terms of unit vectors i along east, j

along north, and k along the upward-vertical. The nominal earth-spin, E, is

expressed as

E = RS(j*cos(L) + kesin(L))

where:

R - nominal spin rate (about 15.041070/hr)

L = nominal latitude

Similarly, we denote the warp angle vector, a, as

a-= ial + j a2 + ka3

the warp rate vector, p, as

p = iepl + jep2 + k*p3

and the earth spin rate deviation, d, as

d = i*dl + j*d2 + k*d3

Further assume that the environment is so benign that, averaged over the period

of observation, all that the accels sense are components of the gravity vector,

seen along the sensing axes of the accels. Then, we can substitute tiltmeters

for the accels. The tiltmeters will simply (and sufficiently) indicate the

direction only (no magnitude) of the gravity vector, and they will do so more

accurately than accels would. Now suppose that the following quantities are

7
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determined over the period of measurement, as perceived in the crustally warped

* body axes:

Average net sensed rotation rate, a

Average sensed unit gravity vector, g

Average rate of change of sensed gravity vector, g'

By simple kinematics, putting the true value of the gravity vector equal to k:

= E + d + p + a xE,
g k+azk

g'- p x k

where x denotes the vector cross-product operator.

Substituting the vectorial component representations for E, d, p. and a, we

get:

e i*(R*(a2*sin(L) - a3acos(L)) + dl + pl)

+ j*(d2 + p2 - Realesin(L))

+ k*(d3 + p3 + Real~cos(L))

g = iea2- jeal + k

i~p2- j pl

The components seen along the three axes i, j, and k are, for the rate sensing

observation:

el R*(a2esin(L) - a3ecos(L)) + dl + pl

e2 - d2 + p2 - R*al*sin(L)

e3 - d3 + p3 + R*alecos(L)

6--,, .""" - • " ,,. ' " . '- - '",".' . .-" ,,,,." : " .." , - -' " . -" . -' , , . ., -'',' ; -. ' ,,



for the tilt observations:

S2 -&I.

g3 I

and for the tilt-rate observations:

gil - p2

Sg2 - -p1

&'3 -zero

From these, we get the partial set of solutions:

al - -g2

a2 - gi

p1 - -S'2

p2-= g'1

Substituting in the rate-sensing observations, we get:

dl -R'a3*cos(L) - el - R*l~sin(L) + g'2

d2 - e2 - R~g2*sin(L) - g'l

d3 + p3 -e3 + R*g2*cos(L)

* This shows that we can determine al. a2, p1, p2, and d2, but that we can only

determine d3 and p3 in the combination d3+p3, and dl and a3 in the combination

dl-ROa3*cos(L). In some situations, we may know a priori that the vertical

* axis component, p3, of the warp rate vector, p, is zero. T-hen, d3 can also be

determined, but there remains the indistinguishability between the east-west

component of earth spin vector wander, dl, and the vertical axis component of

9



crustal warp rotation, a3. Hence. inertial measurements don't suffice to

* define the deviation of the earth spin vector. nor the local crustal rotational

*warp. Therefore, we cannot use inertial measurements alone to orient to the

* earth-fixed reference frame.

* RESOLUTION OF DISTINGUISHABILITY

Within the constraint of avoiding the use of astronomical scale fixes, such as

lunar laser ranging, star shots, etc., there are three ways of dealing with

this problem. One of these is to use a high-quality theodolite, affixed to the

device to be oriented. and landmark(s) at a sufficient distance from the

viewing point, in the horizon plane. A sufficient distance means far enough

I away so that effects of landmark crustal rotation are attenuated to zero (but

- not so far as to give excessive refraction errors). How far remains to be

determined, as a function of what's needed and what's possible. Clearly, the

* wall of a small chamber housing the apparatus would be a poor landmark:

distances of several hundred Meters Would probably be needed. This would

* enable determination of crustal rotation and rotation rate around the vertical

axis Wa and p3, respectively), to the accuracy of the theodolite-operator

* system.

The average rotation angle around the vertical would be the average of some

number of equi-time-spaced readings of azimuthal deviation, taken over the

observation period. The average rotation rate around the vertical would, in

principal, be the difference between an initial azimuthal deviation reading and

* a final one, divided by the time difference between the two readings. In

* practice, this may be refined by best-fitting to all the azimuthal deviation

* readings. The accuracy of individual theodolite fixes is about 1 arc-sec,

I rms. If this is random independent "'white noise'' error, 100 successive fixes4

would average the error down to 0.1 arc-sec rms. Very likely, one would have

to take successive fixes incessantly. Well-correlated fix error could be a
* major problem.

10



The expected plethora of theodolite fixes would, of course, be passed into a

computer. However, this method could still be very labor-intensive, because of

the multitude of readings to be taken, and because of the indexing, plunging,

and what-have-you that accompanies theodolite readings, in order to cancel some

of the systematic errors. Some of this could doubtless be automated, but there

would still be demands on the operator. For these reasons, and because of the

eventual environment the system might be required to operate in, this approach

was dropped from further consideration.

The second method of dealing with the distinguishability problem is to use

independently determined earth spin vector values. Then, we know the values of

dl, d2, and d3, and we get a3 and p3 by:

a3 = (dl - el + R*$l*sin(L) - g'2)/(R*cos(L))

p3 = 63 + R*g2*cos(L) -d3

The earth spin vector is a world constant. So. it can be determined at any

convenient location and its value then transmitted to a multitude of sites.

The value is then easily transformed into a local coordinate system

expression. Specifically, let the deviation be expressed as the vectorial sum

of a polar deviation (i.e., a deviation in magnitude), DM, a deviation along

the Greenwich meridian, DG, and a deviation along the 900 east meridian, DE.

Then, at latitude LN north and longitude LE east, the locally-seen earth spin

deviation vector is

d = ie(DG*sin(LE) + DEecos(LE))

+ j*(DM*cos(LN) + sin(LN)*(DG*cos(LE) - DE*sin(LE)))

+ k*(DM*sin(LN) - cos(LN)*(DG*cos(LE) - DE'sin(LE)))

0
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dl = DG*sin(LE) + DE*cos(LE)

d2 - DM*cos(LN) + sin(LN)*(DG*oos(LE) - DE*sin(LE))

d3 = DK*sin(LN) - cos(LN)O(DG*cos(LE) - DE*sin(LE))

In principle, measuring the exact earth spin vector at a central location is no

easier than doing it at a multitude of sites. But, it may be possible to find

locations where the earth crustal warp is essentially zero, e.g., on some

special underground bedrock granite formation, far removed from seismic

epicenters. These determinations could be intermittently checked by star

sightings, whenever the ''seeing'' is favorable. The assumption is that some

special earth-spin-measurment laboratory can be set up at some favorable

location(s) to provide continuous values good to within 0.1 arc-sec rms.

There is a third possibility, suggested by our perception of the ultimate

application by the customer (AFGL). It appears that the system could

eventually be deployed at a large number of sites, N, with measurements taken

fairly frequently. Furthermore, it would be reasonable to assume that the

crustal warps at all N sites would constitute a zero-mean random independent

set. Consequently, the multi-site mean crustal rotation around vertical

should be zero, with an rms deviation around that value of magnitude l/SQRT(N)

times the rms value of individual site crustal rotations around the multi-site

mean. If so, the individual determinations of site crustal rotation plus earth

axis deviation should, upon multi-site averaging, produce an estimate of earth

axis deviation, corrupted by 1/SQRT(N) times the rms crustal deviation.

Actually, the computation would be somewhat more complex than the above,

especially if the sites were well separated on the earth surface. In that

case, the averaging would have to include the fact that earth spin axis

deviation will be seen differently at each of the N locations. It would, in

fact, be a straightforward least-squares best-fit procedure.

12
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DUAL-FREEDOM STRAPDOWN CONCEPT

Northfinding/leveling is performed routinely by all inertial navigation systems

as a preliminary to entering the navigation phase. Accuracy of northfinding is

typically about 1 mrad, achieved in 15 min. The major factors affecting

accuracy are gyro biases (fixed and random) and accelerometer biases.

In order to enhance performance, we may rotate the inertial sensor assembly

(ISA) about one or more axes, called carouseling. By so doing, the effect of

gyro and accelerometer fixed biases may be partially or totally eliminated,

depending on the number of axes of carouseling.

In a pure strapdown system (see Figure la), attitude error is essentially the

time integral of all gyro error terms. In order to reduce the error, the

inertial sensors may be mounted to a rotating base, rather than to a fixed one

(see Figure lb). Partial commutation or averaging of systematic gyro errors

results. There is a reduced attitude error for axes in the plane of rotation,

but none for the the out-of-plane one. (It does not help to dispose the three

gyros so that all three gyro axes partake of the rotation.)

Further attenuation is provided by a dual-freedom strapdown approach, in which

the plane of the rotating turntable is itself being rotated (see Figure ic).

If both rotational axes are properly controlled, it is possible to get almost

bounded attitude errors over very long time periods, due to constant gyro

errors such as bias, scale factor error, and misalignment. There is, however,

no reduction of the error due to dithered laser gyro random walk.

Raving thus dealt with systematic error sources, the final step is to rate-bias

the gyros to eliminate random walk. The three gyros are maintained in

uninterrupted unidirectional rotation, rather than being dithered in periodic

motion. This eliminates the look-in error increments that occur as the gyro

rotation rate goes through zero twice per dither cycle, and hence eliminates

13
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a. Pure strapdown

b. Single-freedom strapdovn

c. Dual-freedom strapdown

Figure 1. Evolution of Dual-Freedom Strapdown Triad
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the resultant random walk. To do this on the dual-freedom approach, we elevate

the gyro input axes above the equatorial plane, so that all three gyros receive

a portion of the angular rate about the inner axis, and we slip-ring the inner

axis, to allow continuous rotation. I
To summarize, pure strapdown is the simplest approach, but has the greatest

attitude error growth. The single- and dual-freedom approaches attenuate,

respectively, some and all of the attitude error due to fixed gyro errors,

without any reduction of that part due to random walk. Finally, dual-freedom

strapdown with rate-biasing eliminates virtually all errors. This is the

configuration that we have selected for analysis and simulation.

DUAL-FREEDOM STRAPDOWN ROTATIONAL STRATEGY

Appendix A shows that two conditions suffice to enable successful dual-freedom

strapdown rotational strategy

1. The inner axis rate is an integer multiple of the outer axis rate.

2. The outer axis reverses direction at 3600 traverse intervals.

These ensure the commutation of gyro and accelerometer bias, scale factor, and

misalignment errors.

The Appendix A analysis assumed that the outer axis can reverse direction

instantaneously, and that there are no nonlinearity errors in the sensor

outputs. But, the analysis can be extended by expressing all quantities

appearing in Appendix A tables as Fourier series over one cycle of the outer

axis. This leads to a refined dual-axis rotational profile that gives periodic

cancellation of the following sensor errors.

15
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* gyro bias errors

* gyro linear scale factor errors

* gyro misalignment errors

* gyro scale factor asymmetry and nonlinearity errors

* accelerometer bias errors

* accelerometer linear scale factor errors

* some accelerometer scale-factor nonlinearity errors (all odd powers, 0th

and 2nd even powers only)

* accelerometer misalignment errors

An example of error-cancelling gimbal angle profiles is shown in Figure 2. The

outer gimbal rates consist of zero rate segments, constant rate segments, and

ramp rate segments. More generally, error cancellation is provided when each

segment of the outer axis rate profile is symmetric about its midpoint.

OUTER AXIS RATE PROFILE AREA 45
0

OUTER AXIS ANGLE PROFILE

I I
I
I I

f INNER AXIS RATE PROFILE I /-AREA 10

1,t ,,Ad

Figure 2. Dual-Freedom Sensor Assembly Rotational Profile
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SECTION 3

SENSOR AND SYSTEM ERROR MODELS

GYRO RATE WHITE NOISE

The effect of rate white noise on system attitude error can be defined by the

simple model:

SCgfng

= CAn.

where C and A are defined by:

C = transformation matrix from sensor reference axes to local-vertical

reference axes

A = transformation matrix from gyro axes to sensor reference axes

The covariance matrix of T for equal intensity white noise in each gyro is

governed by:

= CAATCTN

where:

P = E(V WT)

and N is the gyro white noise spectral intensity.

7

17



If, as is frequently the case, the matrix A is orthogonal, and since C is

orthogonal by definition, the covariance equation reduces to:

P= N

or:

P = Nt,

which is to say:

2= Nt (3-1)

where t is the elapsed time. Therefore, rotation of the sensor assembly

(implicit in C) will do nothing to reduce the effect of the gyro white noise.

SENSOR OUANTIZATION

A thorough assessment of sensor quantization errors is given in Appendix C.

which defines a covariance-based model suitable for performance analysis

purposes. The essence of the quantization-induced error can be described more

simply by considering a single-axis rotational system. One finds that the gyro

quantization error leads to an attitude random walk error, which is defined by:

= waq(T/2)l/ 2 tl/ 2  (3-2)

where:

ov - standard deviation of attitude error

w - sensor assembly rotational rate

aq = standard deviation of the gyro quantization error

IS
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T - attitude update interval

t - time

and:
ms =P/t1 -

where P is the gyro pulse size.

A simplified analysis of the effect of accelerometer quantization leads to a

formula analogous to Equation 3-2 that defines a random walk error growth in

velocity.

It is clear from Equation 3-2 that the random walk error is directly

proportional to rotation rate, and hence, is a major error contributor for

relatively high rotation rates.

PARAMETER VARIATION

The error cancellation properties associated with any rotational strategy are

applicable only when the sensor errors are constant. In reality the sensor

biases, misalignments, etc., will randomly vary due to environmental and other

causes.

Three types of random sensor error variations are considered below.

1. First-order Gauss-Markov process, defined by the first-order stochastic

differential equation:

S+ P1k q

19
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where:

k - random variation in the sensor error coefficient

=1 white noise

P. = 1/correlation time of Gauss-Markov process

The power spectral density of the white noise input is chosen according

to:

N1  2Ala2

where:

N1 = power spectral density of the white noise input

o = standard deviation of the steady-state sensor error variation

A typical sample of a first-order Gauss-Karkov time history is shown in

Figure 3a. The important feature is that, even for a one-hour

K correlation time, the response shows significant high frequency

activity.

2. Second-order Gauss-Markov process, defined by:

k + 202  + 2

where k is the error parameter variation and

2 2.14 6/Tc
020
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in which

Tc  correlation time of the second-order Ganss-Markov process

The spectral density of the white noise function, , is defined by

2  
2

where, as before, is the standard deviation of the steady-state sensor

error variation.

A typical time history for a second-order Gauss-Markov proce is shown

in Figure 3b. Note that, with one-hour correlation time, the response

is essentially free of all of the high frequency variations that are so

prominent in the first-order Gauss-Markov process with the same

correlation time.

" 3. A third type of random sensor error parameter variation is defined by:

k =n

which constitutes a random walk variation in the parameter. A sample

time history for a random walk parameter variation is shown in

Figure 3c. The spectral intensity of the white noise function, il. is

defined by:

N =(Ohr/60)2

*i where uhr is the standard deviation of the parameter growth at one hour.

22
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COMPL IANCE-RELATED ERRORS

In a dual-freedom strapdown system, rectified attitude drift may generated by

g-induced gyro input axis compliance effects.

Attitude error drift rate due to gyro input axis compliance may be characterized

by:

06- -o (3-3)

where:

q = attitude error vector (with components along north-east-down (NED))

C = transformation matrix from a set of orthogonal sensor reference axes to

the NED frame

6M = error in the transformation matrix from gyro input axes to the sensor

reference frame

Wg = nominal angular rate vector measured by the gyro triad
0

The nominal angular rate vector measured by the gyros is related to the nominal

angular rate vector coordinatized in the orthogonal sensor reference axes

according to:

g =-I r
-o 0 -0 (3-4)

where:

w r nominal angular rate vector coordinatized in orthogonal sensor
0

reference axes

I

M-4 = nominal transformation matrix from orthogonal sensor
0

reference axes to gyro input axes

2
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Since:

lW1 =I

therefore,

-1 -1M
6MM + NM =0o 0 0

and

6M = -M 6M- 1 M (3-5)

Substituting Equation 3-4 and Equation 3-5 in Equation 3-3 gives

_CM =-CM A 
r  (3-6)

O -O

which is the basic attitude error equation.

To complete Equation 3-6, the following equations defining C and r are defined.

[CUCO -CUSP Sal

C= A CO 0 (3-7)

gaol SagSA Caj

r )TW = (&sinot acosot 0) (3-8)
-O

where:

a = outer gimbal angle

= inner gimbal angle

24
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For a Vro triad whose axes are nominally orthogonal and coincident with the

sensor assembly reference axes:

Io = I (3-9)

and the error in No 1 can be expressed in general by:

0 8a 1  6b 1

bK-I = a2  0 b2  (3-10)

8a 3  8b 3  0

I

where bai and 6bi are the gyro input-axis misalignment angles.

Now assume that each misalignment angle error can be defined in terms of the three

components of gravity in the orthogonal sensor reference frame according to:

i r r
ba = k il + k i2 + k+ rA (3-11)

8b. = mr + + m A (3-12)

where the kij and mij are compliance coefficients, and Ar, Ar, and Ar are the
1 2' 3

components of the gravity reaction acceleration, defined from Equation 3-7 by:

Ar = -g(-SCp SaSp Ca)T

where g is the acceleration due to gravity.

Substituting Equations 3-7, 3-8, 3-9, 3-10, 3-11, and 3-12 into Equation 3-6

yields an attitude error equation that takes the following form.

25
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_V (C, A ., ,- k1-, k12 ... , -2 .. .. 1 M12 , t

where:

q =(Wn Ve Ird)

and all terms in the linear expansion have either & or as a multiplier.

Each component of V can be determined at the end of a complete gimbal period by

direct integration of f. In the process of doing this, one can easily eliminate

terms involving a by inspection. For example, a term such as

ft asinatcos~t dt
0

is identically zero at the completion of every outer gimbal 3600 traversal (of

duration T), while a term such as

ft 0sn2 P4/ot sin2 dt

0

has a non-zero mean value at the end of each outer axis period.

2
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SECTION 4

SYSTEM ERROR STUDIES

ERROR PROPAGATION IN DUAL-FREEOM SYSTEM

In a rotating system, error propagation depends on the nature of the random

sensor errors. For example, consider the simplified block diagram shown in

Figure 4 for attitude error propagation in a single-freedom system. The

variance of the attitude error can be determined from:

a t 2 = Nftw it.v)dt

where:

w(t,T) = response of the system at time t to an impulse applied at time T

N = power spectral density of the white noise input

02 = variance of the attitude error t

For the first-order Gauss-Markov process, the impulse reponse function is given

by:

w(t,-r) = fte l(t-) sinwrd-,0 .

and for the second-order Gauss-Markov process:

w(tC) =ft(t- ) e-02 ( t - 'r) sinw~dT

0

For the random walk process:

w(t,v) = ft U(W) sin wzdvo

where U denotes the unit step function.
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a. First-order Gauss-Markov process

,I- J-7-1GR IS-b SnG

2(S +3 0) 2 1VARIATIONH

b. Second-order Gauss-Markov process

c. Randomr-walk process

17 = UNIT INTENSITY WHITE NOISE

a - STANDARD DEVIATION OF GYRO BIAS VARIATIONS IN STEADY STATE (GAUSS-MARCOV PROCESS)

w= ROTATION FREQUENCY

= ATTITUDE ERROR

0 = = MCORRELATION TIME OF FIRST-ORDER GAUSS-MARKOV PROCESS)

= 2146/(CORRELATION TIME OF SECOND-ORDER GAUSS-MARKOV PROCESS)
0hr =STANDARD DEVIATION OF GYRO BIAS VARIATION AT I hr (RANDOM WALK PROCESS)

Figure 4. Attitude Error Propagation in a Rotational System

Ile asymptotic characteristics of the solutions can be established by carrying

out the integrations analytically and discarding all terms in the solution that

* decay with time. The result is that the attitude error variances become

asymptotically equal to:

a to0 (Wt/2 (first-order Gauss-Markov)(41

* 2
*r -a=0(w)t/2 (second-order Gauss-Markov) (4-2)

where 01(w) is the power spectral density of the first-order Gauss-Markov

process at the rotational frequency, w, and is defined by:
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2

01"( ")= 2 2

A1 +

and 02 (w) is the power spectral density of the second-order Gauss-Markov

process at the rotational frequency, and is given by:

3 2
2(  = 2 2
2( (1 2 + 2)

For the random walk parameter variation

2
o = (w) tr

where:

2/ 2
r (W) = (a hr/6 2 (4-3)

It is seen, therefore, that all three processes lead to a random walk error

propagation tendency in attitude. It is also clear that, for the Gauss-Markov

processes, the variance of the random-walk component of attitude error is

directly proportional to the amount of power in the process at the rotational

frequency, w. Comparing 01 and 02, the ratio of powers at the rotational

frequency is determined as

S+ 2 2 2+W2)2

0I(w)/O (w) = 1 23 A 2
1 2 2 +2 20 320 P 2+W 2

2~ ~ 2~ 1 2

For example, consider:

1/1800

02 - 2.146/1800

w - 2n/60

29
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which yields the result that

1(t)/02(w) = 1799

Therefore, the standard deviation of the random walk component is greater by a

factor of 41799 = 42.4 for the first-order Gauss-Markov process compared to the

second-order Gauss-Markov process for the example chosen.

It is clear from Equations 4-1, 4-2, and 4-3 that each type of parameter

variation leads to a random-walk in attitude. It can be shown that, for a

Gauss-Markov process of any order whatsoever, the attitude error growth is

defined by the general form:

2o 2= 0() Wt/2

where ON(W) is the power spectral density of the nth-order Gauss-Markov process

at the rotational frequency w. The implication is that the choice of a random

* process for representing sensor variations is not critical. It is important

only that the power at the rotational frequency have some meaningful value.

This is true for performance analyses and for Kalman filter design and

evaluation.

COVARIANCE ANALYSIS AND KALMAN ESTIMATION

Consider a dynamic system whose behavior is defined by the following set of

discrete linear equations:

Xn= 0n Xn-1 + Bnln (4-4)

where:

X = vector of states

- vector of random (zero mean) noise sequences

30
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- o I

n= state transition matrix from (nU-)th to nth iterations

Bn = noise distribtution matrix at the nth iteration

For a given 0 and B, the state X will have a time variation determined by the

particular noise sequence, TI, and the initial condition, Xo, which in general

is taken to be a randomly distributed quantity. Since the noise sequence, -n,

has an infinite number of realizations and the initial condition error can

assume an infinite number of values, the system of equations given by Equation

4-4 has an infinite number of solutions. Because this is true, attention must

be focused on the statistical behavior of Equation 4-4 rather than on specific

solutions.

The most natural and useful way of characterizing the behavior of Equation 4-4

is to compute the statistical parameters that define the bounds on the state

vector, X. The statistical bounds on the components of X are found by solving

the covariance matrix equation associated with Equation 4-4, which takes the

recursive form:

Pn= n Pn-I OuT + Bn Qn BuT (4-5)

where P is the state covariance matrix of the state vector, X, defined

explicitly by:

P- [pij]

and

Pij = E(XiXj)
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in which E denotes the expectation operator. It is seen that the individual

* variances of the components of X are defined by th. diagonal elements of P,

* with the joint expectancies (cross-correlations) being defined by the

off-diagonal elements of P. The matrix Q in Equation 4-5 is the covariance

matrix of the driving noise vector, Y1, which is defined by:

Q qjj]

and

qj E(tij

* Suppose that the discrete process defined by Equation 4-4 represents the true

dynamic propagation characteristics of a given linear system. Suppose further

that at some time a measurement is made (using an external measuring device)

that allows a specific linear combination of the states to be directly

monitored. A generalized way of stating this in mathematical form is

Yin HX + 4m(4-6)

where:

=m vector of measurements at time ta

H, = measurement matrix at time tm

-4 = measurement noise vector applicable to mth measurement

* and it is assumed, in the general case, that a number of independent

* measurements may become available simultaneously.

- Consider now the question of how one could use the information introduced

through a series of measurements of the form given by Equation 4-6 to optimally

estimate the state X in a sequential fashion. This is the central problem

addressed by Kalman estimation theory, and has the following solution.
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After each measurement (of a sequence of measurements) is made, the estimate of

the state X is refreshed by the two-step procedure:

)-( = w t )tM14(to- (4-7)
m m u-1 u-1

I(t) =(t ) + (Ym - H 1-(t (4-8)m m m m m

where:

th
X in) = best estimate of vector X just prior to the m measurement

m(tm) best estimate of vector X after incorporating the information
m thintroduced by the m measurement

th(t ,~ state transition matrix spanning the time between the m and
(m-i) measurements

Km = Kalman gain matrix at the mth measurement point

Ym = vector of measurements

Hm = measurement (observation) matrix at mth measurement

with Lm defined by:

K =PH T(H P-H T + R (4-9)
m m M m m M m

in which

P = a priori error covariance matrix of the vector Xm

R measurement error covariance matrix = E(QtT)
m Im

and the a priori error covariance matrix P; is computed by using Equation 4-5

over the period from the mth to (m-l)th measurements.
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After processing of the mth measurement, the error covariance matrix of the

state X is modified to reflect the benefit of incorporating the new information

introduced by the measurement, as follows.

P =(I - KmHM)P-I (4-10)

and Pm is referred to as the fa posteriori' error covariance matrix. The form

given by Equation 4-10 is applicable when the Kalman filter is fully optimal;

that is, the filter is a full-state filter in which all components of X are

fully acounted for in the mathematic model, and further, are re-estimated after

each successive measurement is made available.

Formulation of Dual-Freedom System Simulation

The northfinding process is assumed to take place in real-time (rather than by

data post processing) via optimal estimation (Kalman filtering) techniques.

The alignment Kalman filter is based on the fact that the reference origin of

the sensor assembly has zero velocity. Then, the velocity indicated by the

system becomes a measure of the alignment errors (azimuth and level).

A discrete error equation for expressing deviations in attitude and velocity

for the northfinding mode is given as (see Appendix B):

Yn 11 -n-1 + (12 -n-l + Ln (4-11)

where Y is the vector of attitude and velocity error states defined by:

Y -- ('_ 6 V)T (4-12)

in which:

'= attitude error vector

6 = velocity error vector
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and X is the vector of sensor errors, which are represented in general by

second-order Gauss-Markov processes:

= (X1 X2 ... XN)T (4-13)

Each component of the sensor bias vector, X, is defined by two first-order

differential equations according to (see Figure 4b):

X 102Xi .U U (4-14)

Ui + 02U i -14-2  (4-15)

where i is a unit intensity white noise function, and

2= 2.146/(correlation time)

The vector X represents the short-term instability in the sensor error parameter

vector. Only the short-term instability is of importance. The constant

components of sensor error are dealt with by the error commutation properties

inherent in the sensor assembly rotational profile (see Figure 2). The single

exception is vertical drift rate, due to input-axis compliance. Since this

effect is highly stable over time (based on experimental evidence), it is

assumed that, prior to northfinding, the vertical drift rate has been calibrated

and compensation provided. Alternatively, the vertical drift rate may be

fine-calibrated during the northfinding process by adding an additional state to

the Kalman filter. In either case, the effect of the vertical drift rate can be

made negligibly small.

Equations 4-11 through 4-15 describe the evolution of the error state. The

discrete uncorrelated process noise vector, j, is defined to include gyro random

walk and sensor quantization errors.
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The measurement equations for the northfinding process are defined by:

Yl =Vi + Al (4-16)

Y2 6V2 + 92 (4-17)

where:

yl, Y2 = indicated velocity outputs of the navigation system along north

and east axes, respectively

6VI , 6V2 = errors in the north and east velocity components, respectively

il P2 = measurement errors (spurious velocity components due to random

base motion effects)

Based on Equations 4-11 through 4-17, an alignment Kalman filter is defined. In

the present study, the Kalman filter update interval is chosen to be the same as

the period of the outer axis rotational profile (4 wim). By so doing, the

achievable alignment accuracy becomes independent of any latent sensor

calibration errors. Only short-term instabilities in the sensor errors (as

defined by Equations 4-14 and 4-15) affect the accuracy of the alignment. By

enforcing this constraint, the computational requirements of the alignment

Kalman filter are greatly reduced, without loss of performance.

A set of la sensor errors that was assumed for assessing the performance of the

three-axis navigator approach is defined in Table 1. The gyro random walk
coefficient of .45 x 0- 4 de at 1 hr is based on experimental results obtained

for the Honeywell GG1389 laser gyro. The quantization la errors are based on

the assumption of a uniform distribution for the quantization error, and the use
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TABLE 1. la ERRORS ASSUMED FOR THREE-AXIS SIMULATION

Gyro

0 Random walk = 0.0000450/rt-hr
* Quantization - 0.022 arc-sec
* Gyro bias short-term variation = 0.010 /hr
* Gyro scale factor short-term variation = 0.05 ppm
* Gyro input axis misalignment short-term variation = 0.05

arc-sec
Accelerometer

* Quantization = 0.0006 ft/sec
* Accel bias short-term variation = 0.10 micro-g
0 Accel scale factor short-term variation = 0.5 ppm
* Accel input axis misalignment short-term variation = 0.5

arc-sec

Other

I Short-term translational base motion = 0.005 ft/sec

of a phase-lock loop to increase the resolution of the gyro output to 0.075

arc-sec.

The short-term sensor errors are assumed to be second-order Gauss-Markov

processes with a correlation time of 1 hr. However, the lo values given in

Table I are not meant to imply bounded behavior. Rather, the intent is to

characterize their short-term variation over times comparable to the period of

the outer axis (4 min in this case).

Ie 3
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Results of Dual-Freedom System Simulation

The three-axis system covariance and error sensitivity analyses were first

framed around the assumption of using three GG1300 RLGs, with a complete set of

rms error parameter values assumed as below. Errors are assumed random

independent, and with Gaussian distributions, except for quantization errors,

which are assumed to be sum-bounded, and to have triangular distributions.

Gyro: Honeywell GG1300 RLGs, in rate-biased mode (i.e., prolonged

unidirectional rotation)

Angle random walk 0.0001 0/rt-hr

Quantization/spillover 0.03 arc-sec

Bias random walk 0.01 0/hr-rt-hr

Scale factor random walk 0.05 ppm/rt-hr

Accelerometers: 3 Bell lls, or equivalent

Pulse-weight quantization 0.0006 ft/sec

Acceleration random walk 0.1 micro-s's/rt-hr

Scale factor random walk 0.5 ppm/rt-hr

Input axis instability 0.5 arc-sec/rt-hr

Bias errors are cancelled by carouseling around two indexation axes, over a

4-min cycle. Consequently, the system puts out updates of three-axis attitude

15 times per hour. At each update, the system output is reset, by ''reminding"

the system computations that the system has undergone zero displacement over the

preceding 4 min, and has zero velocity.
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The reset process is clearly seen in Figure 5, which shows the evolution of rms

drift error around the north-south axis, as produced by computer simulations.

The error locus is the lower envelope, with an asymptotic value of about 0.085

arc-sec. The simulation is quite similar for east-west axis drift. In

Figure 6, we see the simulation of vertical axis drift error. This has an

apparent asymptote of about 1.4 arc-sec. The drift is smaller around the

" horizontal axes because the gyros are greatly helped by the tiltmeter aspect of

the accels. Horizontal axis drift is dominated by the accel quality and

vertical axis drift by the gyro quality.

The Honeywell G1300 RLG, on which the foregoing results were obtained, used to

be our best gyro. Now, we have the high-performance GG1389 RLG, with the
following characteristics:

0.25 SIMULATION OF NORTH-SOUTH rms ERROR

OF 3-AXIS NAVIGATOR, USING GG1300s,
SAMPLED3 AT 4-min INTERVALS

0.20

U

LU

ao 0.15p i li
a

0.10

0.05 ! I ! !

0 1 2 3 4

TIME (hrs)

Figure S. Simulated North-South zms Error, Using GG1300s
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SIMULATION OF VERTICAL AXIS nm ERROR
OF 3-AXIS NAVIGATOR, USING GG13U1s,
SAMPLED AT 4-... INTERVALS

'. 6

- 4E

2

0 12 3 4

TIME (hrs)

Figure 6. Simulated Vertical ms Error, 10sing GGl300s

Gyro: Honeywell GG1389 RIG. in rate-biased mods (i.e. prolonged

unindirectional rotation)

Angle randou walk 0.0000450 /rt-hr

Quantization/spillover 0.02 arc-sec

*Bias random walk 0.010 /hr-rt-hr

Scale factor random walk 0.05 ppm/rt-hr

*Input axis instability 0.05 arc-sec/rt-hr

*We see from Figures 7 and 8 that the simulations show drift errors around the

east-vest and north-south axes of about 0.07S arc-sec. This is about the same

as with GGl300s. As previously mentioned, this part of the drift is

acel-linited. In Figure 9 we see that drift around the vertical is

asymptotically 0.55 arc-sec*, as could be expected, this gyro-limited term is

* improved by going from the GG1300 to the GG1389. However, it is still too high

for a subarc-second system.
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Discussion of Simulation Results

- The reason that the vertical axis drift is asymptotically bounded (rather than

- being an unbounded random drift to match the unbounded random walk of the

vertical component of the gyro outputs), is as follows: The vertical axis drift

attempts to ''tell'' the system that the horizontal gyro sensing plane is in

unbounded rotation. If this were really so, then the direction of the

horizontal component of earth rate, as seen by the system, should also appear to

be unboundedly rotated. When this fails to occur, the system starts to

'ignore'' the vertical axis drift. The final result is a compromise between

" vertical axis random angle drift and horizontal plane angular rate white noise.

0.8
SIMULATION OF EAST-WEST rim ERROR OF
3-AXIS NAVIGATOR, USING GG1389s,
SAMPLED AT 4-MIN INTERVALS

0.6

c -0.4

°. - .

0.2

- -0.0 0.5 1.0 1.5 2.0

TIME (hrs)

S Figure 7. Simulated East-West rma Error, Using GG1389s
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SIMULATION OF NORTH-SOUTH flin ERROR OF
.me5 3-AXIS NAVIGATOR, USING GG13UW. SAMPLED

AT 44AMu INTERVALS

.075

S.070

.060

0t0 0.5 S.0 1.5 2.0

TIME (hnl

Figure 8. Simulated North-South rma Error, Using GG1389s

1.4
SIMULATION OF VERTICAL AXIS rmis ERROR
OF 3-AXIS NAVIGATOR, USING GG139s, SAMPLED
AT 4MIN INTERVALS

1.2

cc

0.6

0.4 ___

0.0 2.S 5.0 7.5 10.0 12.5 0L 17.5

TIME (Iws)

Figure 9. Simulated Vertical rma Error, Using GGl389s
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The azimuth error is estimated via the two horizontal velocity components, and

this process tends to follow the law

N1/ t-1/2
= t(4-1)

W C).e

where

N = intensity of gyro white noise drift

we = earth's rotational rate (0.729 x 10- 4 rad/sec)

c) = cosine of latitude

a 11 error in estimated azimuth

Simultaneously, the azimuth error tends to grow due to the component of total

gyro random drift acting in the vertical direction. This increase in azimuth

error follows the law

= N1 / 2 t1 / 2  (4-19)

Therefore, the decay of error, as predicted by Equation 4-18, is equal to the

growth of error predicted by Equation 4-19 when:

: t1 / 2-

t

W cX t

or when

t =
e

For ), = 450, this gives:

t 19402 sec = 5.4 hr
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This is reasonably close to the azimuth error convergence time constant seen in

Figure 9. The basic reason we see this irreducible azimuth error is that the

overall model included the possibility of azimuth drift over the measurement

period.

If one assumes that the system maintains an essentially fixed orientation

relative to north over an indefinite time, further accuracy of northfinding is

possible. A simple approach would be to average a series of northfinding

results, each obtained over some fairly short period of time (say about

1/4 hr). Then, the composite accuracy would be improved by a factor equal to

the square root of the total measurement time. If, as an example, 64

northfinding experiments were run, each 1/4 hr, then the composite accuracy

would be:

a/ 1.3/4 = 0.32 arc-sec

This is the basis of the simplified one-axis concept, measuring over a 16-hr

interval. Assuming constant orientation relative to north, the composite

accuracy of a sequence of northfindings would improve indefinitely. Thus, at 48

hr, the la azimuth error would be 0.20 arc-sec, and so on.
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SECTION 5

ONE-AXIS SYSTEM STUDY

* ERROR ANALYS IS

The results of the three-axis navigator system studies suggest that it is

pointless to measure rate around the vertical axis. We need a different

* approach and philosophy. In the horizontal plane, the best quality earth-rate

information is conveyed along the east-west axis. Earth-rate measured around

the north-south axis is maximum for horizontal axis measurements, and hence

4 varies only second-order with first-order azimuthal drift, i.e., conveys zero

azimuthal drift information. Thus, we are led to the concept of using a single

gyro, oriented east-west. This is the basis of the one-axis alternate system.

Because of the rather simple theoretical structure, error effect analyses are

straightforward, the hardest part is deciding on a model of the kinds of errors

*to consider. For completeness, we assume that there are random errors in

- measuring the g, the g', and the e vectors, not necessarily uncorrelated. There

are seven variable errors to consider, namely, in el, e2 and e3, in gi and g2,

- and in g'l and S'2. g3 is assumed to vary only second-order around its nominal

value of 1, and isn't measured. g'3, the time derivative of g3, is of course

* also second order and is ignored.

* It is convenient to discuss errors in terms of their main end effects. In this

K- case, the obviously crucial end effect is the misdefinition of the earth-fixed

reference frame, described by the orthogonal triad i, j, and k, along east,

Onorth, and upward vertical. The error end effect comprises small increments,

di, dj, and dk, respectively perpendicular to i, j, and k. The i, j, and k axes

are constructed from the computed wander-corrected unit vector earth spin axis,

s, and from the computed unit vertical vector, v. For k, we use v. Knowing the

I latitude, L, we express s as:
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s = j*cos(L) + kesin(L)

- For j, we use the k-free component of s. normalized to unity:

j = (s-k*(k.s))/cos(L)

(where 'k.s'' denotes "scalar product of vectors k and s')

For i, we simply vector-crossproduct j and k:

i = (s x k)/cos(L)

The error in k is simply the error in v, conveniently expressed as

dk = dv = i*vl + j*v2

The error in s is conveniently expressed in terms of east-west and meridional

components, along i and along kecos(L)-j*sin(L), respectively:

ds = i*sl + (k*cos(L)-j*sin(L))*s2

The errors in i. j, and k. in terms of dv and ds are

di = ((ds x k) + (s x dv))/cos(L)

dj = (ds - dve(k.s) - k*(dv.s) - k*(k.ds))/cos(L)

dk =dv
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These effects can be represented by a rotational error vector, z:

di =z x i

dj= z xj

dk = z x k

where:

z -i*v2 + j*vi + k*(vl*sin(L)-sl)/cos(L)

The reference-frame errors depend on the two components, v1 and v2, of the

vertical error and on the east-west component, si, of the earth spin axis

4 error. Since the meridional component of the earth spin is ignored, by relying

solely on the north-south component of the tiltacters, s2 plays no role in the

error analysis. The rationale for so doing is the assumption that the tiltueter

* accuracy will be Considerably better than the gyro accuracy, so any

inconsistency between tiltzneter readings and gyro readings (implying a false

value of latitude) is to be resolved in favor of the tiltmeters.

The error components vi, v2, and si are simply:

vi = err(a2) = err(gl)

v2 = err(-al)= err(g2)

si = -err(di/R)

- sin(L)Oerr(sl) -cos(L*err(&3) -(err(.i) + orr(g'2))/R

Substituting, the rotational error vector becomes:

4 z =-i*err(g2) + j*err(gl)

+k*(err(a3) + (err(el) + err(s'2))/(R*cos(L))
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If we use independently-generated values of earth spin axis deviation, or

multi-site averaging of vertical axis warp, we dispense with the theodolite

observations of landmarks, and the a3 contribution to z disappears, giving:

z = -i*err(g2) + j*err(gl)

+k(err(el) + err(s'2))/(Recos(L))

This says that the tilt component of the rotational error (i.e., that part which

is around a horizontal axis), is due to the tilt measurement error

(crossproducted with the unit vertical), and that the azimuthal rotation

component is due to east-west axis rotational error, comprised of the sum of

gyro east-west axis rate measurement error and of east-west axis rate-of-tilt

measurement error. The foregoing results are completely in harmony with

intuition. The components of z around horizontal axes are governed simply and

solely by the tiltmeter errors. The component of z arou-I the vertical axis has

the expected sensitivity to latitude. The errors in gl and g2 are respectively

east-west and north-south tilt errors, and that in s'2 is the error in

determining the rate of change of north-south tilt. The error in el is the

error in measuring east-west rate.

GYRO PERFORMANCE REQUIRIMENTS

Assume the performance is to be dominated by gyro random drift error. This is

justified by the high-quality state of the art in tiltmeters and by the fact

that we can remove the effect of gyro low frequency bias errors by indexing (as

well as tiltmeter bias effects). Then, the azimuthal component of the error

vector, z, wil be equal to:

z(az'l) err(el)*secant(latitude)/earthrate
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The rms error in el will, under angle random walk (which is rate white noise),

* be equal to the random walk coefficient divided by the square root of the time

* of observation, giving:

z(az'l) =RW*SEC(L)/(R*SQRT(TAU))

where:

RW = Random drift coefficient, deg/rt-hr

L = Latitude

R = Earthrate, deg/hr

TAU -Time of observation, hr

Putting R = 15.04110/hr, and assuming a measurement time of 16 hr. and

* converting z(az'l) from radians to arc-seconds:

z(az'1) =206265*RWSEC(L/(15.04ll14)

= 3428*SEC(L)*Rf arc-sec rms

Assuming that we want z(az'l) 0.2 arc-see, the random walk value needed to

achieve this is

RW = O.2*COS(L)/3428

=0.000058*COS(L)deg/rt-hr

-Thus, at the equator, we need a 0.000058 gyro. At latitude 450, 0.00004 would

* be needed.
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EXPECTED SYSTEM PERFORMANCE

The finite effects of bias instability and quantization are considered

explicitly as follows. With indexed readings taken over total time T, with each

indexed reading lasting time t, the total rms error angular error is given by

the expression:

SQRT(QS*02/(t*T) + RW**2/T + 3*(BI*t/T)**2)/(R*COS(LT))

where:

QS = rms quantization/spillover = 0.024 arc-sec

RW = Random walk coefficient = 0.000040/rt-hr

BI = Low frequency bias instability = 0.00030 /hr

R = Earth rate = 15.0410/hr

LT = Latitude - 450

T = Total measurement time - 16 hr

t = Indexation period

The gyro parameter values are from the experimental undithered gyro data

reported in Section 6. The only assumption is that dithered operation can be

enhanced to give the same random walk as undithered operation, using closed-

loop lockin correction (Q.IC) to cancel out random errors accrued at each dither

reversal, as discussed in a later subsection (Gyro Modifications Needed)

Using the above numerical values, the rus error in arc-sec, as a function of t,

is given by:

rms error - SQRT(0.001/t + 0.038 + 0.4*t**2)

This has a minimum value of 0.23 arc-sec at t = 0.11 hr. Therefore, the optimum

indexation rate is about 9 times per hour.

.so
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HARDWARE REQUIREMENTS

Since only the el component of rate error matters, it makes sense to minimize el

by using all the time available to take east-west rate readings. This suggests

that we need only an east-west gyro. An added benefit of using the gyro along a

nominally null-rate axis is that gyro scale-factor variability is not an issue.

Similarly, tiltmeter scale factor variability is removed from the picture by

installing the tiltmeters nominally horizontal.

* Factors contributing to the error in determining the el component of the earth

spin vector are gyro bias error and gyro input axis error, as follows:

err(el) dB + R*(dV*sin(L) + dH~cos(L))

where:

dB = Deviation of gyro bias rate from nominal

dV = Vertical deviation of gyro axis from nominal

dH = Horizontal deviation of gyro axis from nominal

If the deviations, though unknown, are constant over the observation period, we

can cancel their effects by taking indexed readings, pointing first east, then

west, and evaluating the east axis rate as the averaged east reading, minus the

averaged west reading, divided by 2. Indexing around the vertical axis will

cancel the error contributions from dB and dV. Indexing around the north-south

axis will cancel the error contributions from dB and dH. If the deviations are

time-variant, the benefits of indexing will depend on the dynamics of the time

variation.

High frequency bias variation is exemplified by ordinary gyro angle random walk

i.e., rate white noise, against which indexing has no effect. Hence, gyro

output angle random walk is a major driver in this application. Laser gyro
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input axis variation is believed to be of order 1 arc-sac and to vary very

slowly, with a time constant of hours, at least. Thus, indexing should greatly

dilute the dV contribution, probably to a negligible level.

Indexing introduces it's own set of added errors, corresponding to the accuracy

and repeatability with which the indexed orientations are achieved. The

ULTRADEX commercial indexing device can index back and forth through 1800 with

error of < 1/8 arc-sec and repeatability better than 1/20 arc-sec, around the

index axis. The tilt error is ostensibly of order 1 to 2 arc-sec, and is some

variable blend of random from one index to the next and/or quasi-constant.

Any random component would be attenuated over N successive indexes, by a factor

of SQRT(N). Also, it ought to be possible to directly measure the tilt of the

ULTADEX'd upper surface (bearing the gyro and tiltmeters) relative to the lower

main stationary surface on which the ULTRADEX rests. In principle, sensitive

height gages could measure the elevation of the upper surface over the lower, at

four equi-spaced points around the rim of the upper surface. A trivial

calculation would yield the two-axis relative tilt.

GYRO MODIFICATIONS NEEDED

With only one gyro, it is impractical to use kinematics such as are used in the

three-axis system. Three-axis rate information is a must for talleying compound

rotation. A one-axis system must keep the gyro in fixed, or highly constrained,

orientations to avoid uncomputability situations. But, the whole point of the

three-axis kinematics is to keep the gyros out of lockin. At very low input

rates, the laser gyro scale factor degrades to zero, resulting in output error.

So, some other kinematics must be used, which both keeps the gyro out of lockin

and preserves computability. The standard way of doing this is to oscillate the

gyro around its input axis, referred to as dithering the gyro. This avoids the

computability problems of compound motion, exemplified by coning errors.
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Dithering is conveniently done by mounting the gyro on a torsional spring

(oriented around the input axis) and driving the gyro in an angular sinusoidal

motion, typically a few hundred arc-sec peak-to-peak, at a frequency of a few

hundred hertz.

Now, there is another problem. The dither oscillation goes to zero rate twice

every dither cycle, and during these brief instants, lockin effects cause the

gyro output to accrue small increments of error. Their rms value is a function

of intrinsic gyro lockin rate and of the time spanning each dither reversal

.. during which the angular dither rate is less than the lockin rate. Under

ordinary randomized dither, the errors accumulate to a random walk angular

output error. Typical dithered gyro random walks are 0.003, 0.001, and

0.000250 /rt-hr, for the GG1342, GG1300, and GG1389 Honeywell RLGs,

S"respectively. As far as we know, the GG1389 has the lowest ordinary-dither

random drift of any laser gyro in the world, but its value is still far too high

to enable subarc-sec system performance.

Analytic modeling of the laser gyro has disclosed that the error increments

incurred across each dither reversal are, other things being equal, sinusoidal

functions of the nominal value of the gyro phase angle at the dither peak.

Under randomized dither (in which the dither amplitude varies slightly for each

successive dither peak), a random sequence of error increments is generated,

which adds to a random walk. This model has been confirmed by many experiments.

Observed random drifts agree very well with this model (which is is based on

approximating the sinusoidal dither near the peak as a parabola, and then

* - - .integrating the lockin equation to yield a pair of Fresnel integrals to

represent the error increment). So, it was a natural step to pursue the model

* further and find ways to reduce the random drift. The CLIC invention was the

result. This functions by controlling the dither in detail, in such a way that

.. the trig functions (sine and cosine) of the gyro phase angle values at the
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dither minimaxes sum to zero, rather than to an unbounded random walk. Then,

with the trig functions held to zero sum, the drift error will likewise become

bounded and low.

Upon implementing CLIC, gyro random drifts did decrease by a factor of up to

tenfold. With some exceptions, it appears that CLIC makes the gyro perform up

to the so-called quantum limit, as governed by the canonical uncertainty

equations of quantum mechanics. Quantum-limited performance is also approached

when the gyro is continuously rotated in one direction. This has been shown

over five years of research and tests. The hoped-for value of 0.000040 /rt-hr is

about two times the calculated quantum limit. It seems reasonable to expect

this value from a CLIC-enhanced GG1389, especially since it has been achieved

under unidirectional rotation testing.

CLIC has a side benefit that is also vital to getting subarc-sec performance.

It provides enhanced angular resolution, to within < 0.01 arc-sec, instead of

the usual laser gyro pulse weight quantization (1 arc-sec, for the GG1389).

This is done by the CLIC software for the original purpose of calculating gyro

drift error discriminant values. Without this feature, each of the indexed

readings taken would be corrupted by l/SQRT(6) gyro pulses, i.e., 0.4 arc-see

rms. Even with only four readings per hour, this would generate added error of

0.000200 /rt-hr. This would result in performance of 5 times spec, instead of

being almost in spec. But, with 0.01 arc-sec resolution, there would be

negligible added effect.

CLIC has been well developed and refined over the last five years and needs no

further development, beyond putting it into a different gyro than the

presently-used GG1342. This entails some hardware additions to the gyro dither

drive and readout, and simple changes in the software--mainly different values

of constants for gyro scale factor, dither frequency, drive scale factor, etc.
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SECTION 6

EXPERIMENTAL RESULTS

UNDITHERED GYRO RANDOM DRIFT CHARACTERISTICS

Having determined that a subarc-sec system would require random drifts of less

than 0.000045 0/rt-hr, we see that only the Honeywell GG1389 RLG could meet this

goal, and then only when continuously rotated or, if dithered, only with CLIC.

Since we don't have CLIC yet for the GG1389, we proceeded to concentrate on

rate-biased tests. These were done by mounting the GG1389 on our Goertz Series

800 Direct-Drive Rate Table, with the input axis vertical, and rotating at 30

and 400/sec.

The table has bounded-error in its angular measurement, of a nature that is

readily dealt with by processing the output with a triangular filter. This

drastically attenuates the bounded spillover/quantization error of the table

readout, relative to the integrated white-noise angle random walk, and enables

measurement of very low random walks that would otherwise be completely obscured

by table bounded-error noise.

The original copious data stream obtained over 20 or 30 sectors of revolution

was compacted while being generated into a much smaller number of

triangular-filtered one-revolution data ensembles, which were stored in our Data

General computer. They were subsequently computer-processed to generate

variance plots, and best-fitted to a four-parameter curve, comprising residual

bounded error, angle random walk, bias instability, and rate random walk, as

defined by the values of the fitting coefficients.
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The only thing that has delayed the application of CLIC in systems is that it

depends on a computerized prediction of how the inertial rotation input to the

gyro increments over one dither cycle (about 3 msec, for the GG1342). It needs

to know this to within 0.2 arc-sec, in order to generate the right amount of

modulation to change the next dither peak angle to a value that helps to keep

the aforesaid sums of trig functions bounded. So, if there's noise in the

angular environment of order 0.2 arc-sec uncorrelated over 3 msec, CLIC will

break down. Because of this, CLIC is presently limited to benign environments,

such as in the laboratory, on a rigid mounting.

The angular environment in the situation being discussed here is (or can easily

be made so), an extremely benign one. This is a perfect application for OiIC.

A CLIC-enhanced dithered laser gyro may be expected to give random drift

performance equal to that of elaborately carouseled undithered laser gyros.

Now, with no carouseling, one doesn't need three gyros to sort out the

kinematics of compound rotations and to compute platform attitude. Rather, one

gyro is rigidly attached in a well-defined relationship to the surface being

measured. A one-gyro system may not be only equal to the three-axis system, but

even better.

5
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The results of this testing procedure are shown in Figures 10, 11 and 12. These

comprise tests on GG1389 gyro no. 003, done on three different days, at 40 0 /sec

with 30 sector data, and at 300 /sec with 20 sector data. In all these tests,

the best fit is obtained with an angle random walk value of 0.0000400 /rt-hr. We

therefore infer this as the official value of undithered angle random walk for

this gyro. This is close to meeting the requirements for the performance goal

of 0.2 arc-sec rms measurement error over 16 hr, defined in Section 2, and is

even lower than the value of 0.000045 assumed in Section 4 for the Dual-Freedom

System Analysis and Simulation, using GG1389s.

INPUT AXIS STABILITY TESTS

Gyro input axis stability is as important a factor as random drift in a

subarc-sec system, though of lesser relative importance in other kinds of

appJication. For this reason, there had been little formal investigation of

1.0 -
UNDITHEREO RANDOM ORIFT ANGLE CLUSTER ANALYSIS OF

GGI389 NO. 003, AT40°/sK, WITH 30 SECTOR RAW DATA. 17 JANUARY 84

QUANTIZATION - 0.024 orc-see
RANDOM DRIFT - 0.00004/root-hr
BIAS INSTABILITY - 0.000030/hr
RATE RANDOM WALK = 0.000200

/hr-root-hr
RATE RAMP , 0.0

1

Ca IL

1 10 100 1000 10000

INTERVAL TIME (ssc)

Figure 10. GG1389 Random Drift Analysis, 17 January 1984
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* .Figure 12. GG1389 Random Drift Analysis, 19 January 1984



laser gyro input axis stability. But recently, this situation has been

remedied. We did a series of tests between March and May 1984 on three GG1389

laser gyros. These tests indicated a most gratifying degree of input axis

stability, relative to the gyro block itself, with the worst component of the

worst gyro being only ±0.04 arc-sec. This is the intrinsic limiting stability.

The input axis stability relative to the fixturing on which the gyros were

*mounted ranged from 0.25 to 0.90 are-sec, from remount to remount. This

emphasizes the need for carefully-made indexing fixtures for the one-axis

subarc-sec demonstrator unit.

The experimental configuration was as follows: the gyro was mounted on a

fixture with its input axis nominally in the horizontal plane. The fixture

itself was mounted on the Goertz table, with the latter having rotation around a

* nominally vertical axis. The gyro was mounted on the fixture in four positions,

indexed in 900 increments of rotation around the nominal gyro axis. The four

positions are denoted NA up, NA down, LA up, and LA down. LA and NA denote two

gyro body axes perpendicular to the nominal gyro axis (see Figures 13 and 14).

The gyro was operateu with dither on, and with angular input generated by

rotating the Goertz table through many revolutions, both clockwise and

* counterclockwise.

* Nominally, with the gyro axis perfectly orthogonal to the Goertz table rotation

* axis, the only gyro output will be gyro bias and random walk, plus a small

* contribution due to earth rate, seen as a sinusoidal signal, at the frequency of

rotation of the Goertz table, with an amplitude equal to horizontal-plane earth

rate (earth rate times cosine of latitude). But, with data taken over an

*integral number of Goertz table rotations, the latter sun& to zero. (This

assumes a constant rate of rotation of the Goertz table, which is almost exactly

the case.)
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Figure 13. Input Axis Stability Test Set-Up, Side View
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Figure 14. Input Axis Stability Test Set-Up, Front View
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So, the output will comprise bias, plus random drift, plus a contribution due to

the gyro axis unit vector having a small component along the Goertz table

rotation axis unit vector. Using small angle approximations, the resulting

output per Goertz table revolution will equal the gyro scale factor, in

counts/revolution, times the component of the gyro axis along the Goertz axis,

times an adjustment for the earth rate component along the Goertz axis.

From the results of the eight runs, we can determine gyro bias, two components

of non-orthogonality of the gyro sensing axis to the LA-NA plane, and

non-orthogonality between the normal to the LA-NA plane and the Goertz table

rotation axis. With this factor-of-two overdeterminacy, we can also form

estimates of the stability of the above four variables. The computations are

based on the following model of gyro input axis deviation.

Gyro axis unit vector, V, = I + perturbation, D. The values of D in the 4 gyro

orientations are

D(NAU) = J*GL+K*(MK+GN)

D(NAD) = -J*GL+K*(MK-GN)

D(LAU) = -3*GN+K*(MK+GL)

where:

I - nominal V, perpendicular to K

J = in-plane axis, perpendicular to I and K

K Goertz rotation axis

GL = Component of D along LA body axis

GN - Component of D along NA body axis

MK - Component of tilt of indexing axis along K
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The one-revolution output that would ba seen along the Goertz axis at rate R is

CR = SF*(EV+R)/IRI

where:

SF - Gyro scale factor, in counts/revolution

EV Component of earth rate along the Goertz axis

R = Rate of rotation around Goertz axis

The gyro output over one revolution will equal CR times the component of V along

the Goertz axis, plus gyro bias rate times the period of revolution times scale

factor:

GY = SFBG*TAU/2*PI + DKOCR

where:

GY = One-rev gyro output, in counts

BG = Bias rate of gyro, in radians per second

TAU = Period of revolution around Goertz axis, in seconds

DK = Component of D along Goertz axis

PI = 3.1415937022 .....

The foregoing is applied as follows: the method will be exemplified by working

out the set of stability values for GG1389 gyro no. 011, using the measurements

taken for that gyro.

Equating the expressions for the eight outputs to the values actually measured,

we get the following eight equations.

62



GY(NAU,CCW) =  BT + SF*(I+EPS)*(MK+GN) = 110.159 counts (6-1)

GY(NAU, CW) = BT - SF*(1-EPS)O(MK+GN) = -110.600 counts (6-2)

GY(NAD,CCW) = BT + SF*(I+EPS)*(MK-GN) = -19.560 counts (6-3)

GY(NAD, CV) = BT - SFe(1-EPS)e(MK-GN) 20.080 counts (6-4)

GY(LAUCCW) = BT + SFO(1+EPS)O(MK+GL) - 33.980 counts (6-5)

GY(LAU,CW) = BT - SF*(1-EPS)e(H]+GL) = -33.580 counts (6-6)

GY(LAD,CCW) = BT + SFO(1+EPS)*(MK-GL) - 82.220 counts (6-7)

GY(LADCW) = BT- SFO(1-EPS)e(MK-GL) - -81.700 counts (6-8)

where:

BT = SF*BGOTAU/2*PI

EPS = EV/IRI

Using Equations 6-1 and 6-3:

BT+SF*(I+EPS)*MK = (110.159-19.560)/2 = 45.2995 counts

Using Equations 6-2 and 6-4:

BT-SF*(1-EPS)*MK - -45.2600 counts

whereby

MK = 45.2798/SF

and

BT = 0.0198-45.2798*EPS
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On the other hand, we have

Equations 6-5 and 6-7

BT+SFO(1+EPS)OMK =58.1000 counts

* Equations 6-6 and 6-8

BT-SF*(l-EPS)ONK =-57.6400 counts

whereby:

* MK =57.8700/SF

and

BT =0.2300-57.8700*EPS

* Values of the constants are

SF = 1296000 counts/revolution

R = 300/sec

EV = 10.635640)/hr at latitude 450 north

9.Hence, EPS =10.635641(3003600) 0.00009848

Therefore:

* MK(1234) = 45.2798/1296000 rad -7.20 arc-sec

M.1(5679) = 57.8700/1296000 rad =8.10 arc-sec
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i.e. NK 7.65 ±D.45 arc-sec.

BT(1234) = O.0153*180*3600/1296000*PI = 0.0024 are-sec

BT(5678) - O.2300*180*3600/1296000*PI - 0.0370 arc-sec

* i.e., BT= 0.020 ±0.017 arc-sec.

* Furthermore, subtracting Equation 6-3 from Equation 6-1,

GN(13) =64.859/(SFO(1+EPS)) =10.322 arc-sec

and subtracting Equation 6-4 from Equation 6-2,

GN(24) -65.320/(SFO(1-EPS)) =10.397 arc-sec

i.ea., GN = 10.360 ±0.037 arc-sec.

Similarly, subtracting Equation 6-7 from 6-5.

GL(57) = -24.121(SF*(1+EPS)) = -3.838 arc-sec

and, subtracting Equation 6-8 from 6-6,

GL(68) -- 24.06/(SFO(1-EPS)) =-3.830 arc-sbc

- i.e., GL =-3.834 ±0.004 arc-sec

The results for no. 011 are summarized in Table 2.
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TABLE 2. SHORT-TERM AXIS STABILITIES OF GG1389 NO. 011

Value in Variation
Term Arc-Sec in Arc-Sec

NK 7.65 ±0.45
BT 0.020 +0.017
GN 10.360 +0.037
GL -3.834 +0.004

We saw a qualitative repeat of these results on numbers 009 and 004. That is,

very low variability in three terms, and relatively high variability in the tilt

of the fixture indexing axis, MK. This further strengthens the conjecture that

there is either aniso-sag of the gyro dither post under the cantilevered weight

load of the gyro (as between the set of NA up and down measurements and the set

of LA up and down measurements), or else aniso-flexure of the gyro base plate,

or even (less plausibly) aperture-connected bias shift due to aniso-sag effects

on the gyro mirrors, and hence on the location of the laser beam path triangle.

After the above tests, a series of tests were run over a three-day period,

comprising CCW and CW runs in the LA down orientation only. The results are

presented in Table 3.

TABLE 3. MULTIDAY DATA OF GG1389 NO. 011

CCW CW Sum/2 Diff/4*PI

Day 1 90.819 -89.920 0.450 14.38
Day 2 92.400 -91.401 0.500 14.63
Day 3 92.440 -91.520 0.460 14.64
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The daily readings, when differenced, yield the sets of day-to-day differences

listed in Table 4.

TABLE 4. MULTIDAY STABILITIES OF GG1389 NO. 011

Delta-Sum/2 Delta-Diff/4PI

Day 2 - Day 1: 0.05 0.15

Day 3 - Day 2: -0.04 0.01

Diff/4PI represents the value of MK-GL, while Sum/2 represents BT. The above

data suggests that both MK (to do with aniso-sag, etc.), and the gyro i nsic

bias were rather stable over a three-day period, more so than was seen in gyros

1-009 and 1-004.

The counts/rev data for GG1389 gyro no. 009 are listed in Table 5.

TABLE 5. MULTI-ORIENTATION DATA FOR GG1389 NO. 009

NA up CCW 316.329
NA up CW -317.700
NA down CCW 298.698
NA down CW -300.060
LA up CCV 254.500
LA up CW -255.779
LA down CCV 366.423
LA down CW -367.962

6
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From these data, we computed the set of stabilities listed in Table 6.

TABLE 6. SHORT-TERM AXIS STABILITIES OF GG1389 NO. 009

Value in Variation
Term Arc-Sec in Arc-Sec

MK 49.3 +0.25
BT -1.018 +0.007
GN 1.400 +0.005
GL -8.92 +0.02

Then, multiday stability data were taken, as presented in Table 7.

TABLE 7. MULTIDAY DATA OF GG1389 NO. 009

CCW CW Sum/2 Diff/4*PI

Day 1 366.423 -367.962 -0.77 58.44
Day 3 364.621 -366.379 -0.88 58.17
Day 6 378.859 -380.403 -0.77 60.42
Day 7 378.561 -380.282 -0.86 60.39

Plausibly, the multiday variation of +.05 arc-sec in the half sum suggests a

bias instability of order 0.000080 /hr. The small changes in the differences

between Days 1 and 3 and between days 6 and 7 (0.27 and 0.03 arc-sec,

respectively) are compatible with the one-day data stabilities listed in Table

6. The 2.2 arc-sec jump between Days 3 and 6 may be due to some shift in

6

. 68

- '.

,.,- .- . ,, . .,., , .. .. . . , . , . ' -.. . . . . . . . _'



the mounting hardware, associated with shutting down for the weekend. The

GG1389 no. 004 was also tested, giving the one-rev data listed in Table 8.

TABLE 8. MULTI-ORIENTATION DATA FOR GG1389 NO. 004

NA up CCV 35.280
NA up CW -36.000
NA down CCW 198.740
NA down CW -199.921
LA up CCW 20.120
LA up CW -21.420
LA down CCW 236.979
LA down CW -237.980

The multiday data obtained are presented in Table 9.

TABLE 9. MULTIDAY DATA OF GG1389 NO. 004

CCW CW Sum/2 Diff/4sPI

Day 1 240.040 -241.021 -0.490 38.28
Day 2 237.501 -238.478 -0.488 37.88
Day 3 234.681 -236.039 -0.679 37.46

From the data in Tables 8 and 9, we infer the stabilities for GG1389 no. 004

that are listed in Tables 10 and 11.
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TABLE 10. SHORT-TERM AXIS STABILITIES OF GG1389 NO. 004

Value in Variation
Term Arc-Sec in Arc-Sec

MK 7.65 +0.45
BT 0.020 +0.017
GN 10.360 ±D.037
GL -3.834 +0.004

TABLE 11. MULTIDAY STABILITIES OF GG1389 NO. 004

Delta (Sum/2) Delta (Diff/4*PI)

Day 2 - Day 1 0.002 -0.40

Day 3 - Day 2 -0.190 -0.42

TILTMETER CHARACTERISTICS

Since, in a one-axis system, the two tiltmeters could do ''2/3 of the job''

(tilt around north and east), it is fitting to discuss tiltmeter

characteristics. Figure 15 shows (inferentially) the stability of the simple

bubble-level tiltmeter, as it existed in 1963, over a one-year period. Two

bubble levels were placed along east-west and along north-south, for a total of

four. For clarity, the vertical scales were staggered, so that each of the four

outputs could be clearly seen. The two pairs track each other very well. Apart

from some exceptional periods (notably, around June for the east-west pair) they

seem to track within a fraction of an arc-sec, perhaps within 0.1 arc-sec.

Whoever prepared this graph would have been a hero had he/she thought to plot

the differences between the tiltmeter pairs! Unfortunately, the data records

are long gone.
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These were 1963 state-of-the-art bubble tiltmeters. There have been many

refinements since then, notably in the area of digitized readout mechanizations,

with accuracies quoted at 0.05 arc-sac ts. Thus, it is reasonable to assume

that tiltmeter errors will RSS negligibly with gyro errors.
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SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

1. It looks marginally feasible to measure crustal rotation around the

vertical to an accuracy of 0.2 arc-sec rms, over a period of 16 hr, using

either a three-axis navigator-type system, comprising three GG1389 laser

gyros, plus three accelerometers with special two-degree of freedom

carouseling* or a one-axis system, comprising one dithered CLIC-enhanced

GG1389 laser gyro, indexed between east and west, plus two tiltmeters.

2. It is impracticable to distinguish between crustal rotation displacement

around the vertical and EPA deviation along east-west using self-contained

measurements from a single apparatus at one site. Either a central station

determination of earth spin axis deviation must be made and applied to the

total apparatus reading, or possibly multisite averaging may be used.

3. The vertical axis component of the three-axis system angle sensing is

relatively useless, because it is random-walk-driven without any

possibility of correction from accelerometer ''tilt'' readings. Its error

is bounded only by conflicting rate information generated along the east

axis.

4. The two tilt components of earth crustal rotation (around north and east)

can be readily and adequately measured by two tiltmeters. Gyros are needed

only to add information around the vertical.

5. The best deployment of gyro power is along east-west.
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6. The one-axis system would probably work at least as well as the three-axis

system, assuming that accurate indexing can be done.

RECOMMENDATIONS

* Based on the results of this study and on our perceptions of AFGL's needs, we

recommend that AFGL initiate a program to design, build, and test a

Stransportable one-axis demonstrator. As well as showing (or disproving)

feasibility, the demonstrator prototype will indicate further areas to be

studied, refinements needed in the kinematics, added error sources, etc. It

will be the first transportable subarc-second crustal deviation measurement

*device to be built, so all the data it generates will be of the utmost interest

* in guiding future development.

Recommended Demonstrator Desixn

The proposed demonstrator is a single-axis indexed system with two tiltmeters

and a single GG1389 RLG. The sensors and their electronics are fixed to a

platform that is mounted on a computer-driven ULIRADEX precision indexing

- table. The outputs of all of the sensors will be continuously monitored via a

dedicated processor that will perform the algorithm calculation and output the

results to a graphics display, thus allowing continuous monitoring of the

-performance of the system.

A block diagram of the demonstrator hardware is shown in Figure 16. The laser

gyro is mounted with its input axis nominally horizontal, in the plane of the

, plate surface, along a direction that will be nominally east-west when

installed. Two tiltmeters are mounted to sense tilts around nominal east-west,
I

and around nominal north-south. A block schematic of the electronics is given

in Figure 17.
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Figure 17. Block Schematic of Demonstrator Electronics
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The ULTRADEX indexing table is the platform to which all the sensors and their

electronics are fixed. This table is computer-precision controlled, with

position error of < 1/8 arc-sec, and repeatability better than 1/20 arc-sec,

around the index axis. The rotation axis instability is nominally 1 to 2

arc-sec random. This latter component is attenuated over N successive indexes,

by a factor of SQRT(N). If this instability becomes a concern, it would be

possible to measure the relative tilt angle between the top and bottom surfaces

of the platform and explicitly eliminate the effect of rotation axis

instability. This would entail using added high-stability tiltmeters. The

present system design does not include extra tiltmeters, but has expansion

capability to add them at a later date. In addition, the system will allow

changing to different RLGs with minimal modification, thereby facilitating

system performance upgrades as technology produces even better RLGs.

The computation algorithm will be fed by the outputs of the sensors, and its

cycle will extend over each period between successive indexations. The results

of successive cycles will be appropriately filtered to yield a progressively

improved estimate of 1) crustal tilt around some horizontal plane axis, and 2)

combined east-west deviation of the polar axis and crustal rotation around the

vertical. The control and algorithm processor planned for use is the Hewlett-

Packard HP9826. This machine has been chosen for its interface capability to

physical sensors and for its straightforward high-order language operating

system. These factors will allow the control and algorithm software to be

written in a concise and efficient manner.

Demonstrator Features

Automated Overation--Fully automatic data acquisition and control, allowing

unattended operation for extended periods of time.
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On-Line Calculation--Real-time calculation of combined polar axis deviation and

earth crustal rotation around the vertical, from the initial-condition state.

Portability--Rugged design, combined with reasonable size and weight, to allow

easy transport to other laboratory sites for test and demonstration.

Reliability--RLG life and reliability have been clearly demonstrated in

commercial aircraft revenue service, with MTBF in excess of 50000 hr.
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APPENDIX A

ANALYS IS OF DUAL-FREEDOM ROTATIONAL STRATEGY
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APPENDIX A

ANALYSIS OF DUAL-FREEDOM ROTATIONAL STRATEGY

ERROR MODEL

The following error model is assumed.

-C 5 (A-i)

_V a ba -lx_ (A-2)

where:

'_ = attitude error vector of orthogonal ISA system axes relative to an

earth-fixed frame

6V velocity error vector

a = nongravitation acceleration vector of ISA

Cg = transformation matrix from gyro input axes to local-vertical

reference frame

Ca = transformation matrix from orthogonal accelerometer input axes to

local-vertical reference frame

4 = gyro output error vector

6a = accelerometer output error vector

The question is, how must t sensor assembly be rotated to cause attitude and

velocity error to have a mes :alue of zero.

The matrix Cg can be expressed as the product of the matrix A (which relates

the gyro input axes to the system frame), and the matrix C (which relates the

ISA frame to the local-vertical reference axes).

C = CA (A-3)
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The total error in the gyro output (8S) can be decomposed in terms of bias,

scale factor, and misalignment errors as

SW = A ' r/- i + K mg/i + gb (A-4)_ -l

where:

ax/i = inertial angular velocity of the ISA

Mg/i = inertial angular velocity measured by the gyro triad

hg = gyro bias error

8A-1 = error in transformation matrix from ISA axes to gyro axes

Ks  = gyro scale factor error matrix

Putting Equations A-3 and A-4 into Equation A-1 yields:

=P CA(6A'I_ i + K w Si + b )

-l -1
=CA(8AIwri + KA w + b)

g -r/i _g

=CA(A -  + KA - ') w + b] (A-5)
g r/i -g

The effect of gyro input axis misalignment on A-1 can be expressed as

m -18-l 8A-1

-A = a- (A-6)
i=d

where the bi's are the gyro misalignment angles. The gyro scale factor error

matrix, [g, can also be explicitly defined as
K die (kg k k (A-7)

g (kg S5 2 kg3)
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where the kgi s are the gyro scale factor errors and I'diag" denotes a

diagonal matrix. Substituting Equations A-6 and A-7 into Equation A-5 gives:

8 + diag gi ks2 klg3 A1) r/i + bg] (A-8)

The accelerometer output error is expressed as

_= Ka a + b (A-9)

where:

a = nongravitational acceleration expressed with components in the system

frame

ha= accelerometer bias

and Ka is a matrix that accounts for both misalignment and scale factor error

(the diagonal entries being scale factor errors and the off-diagonal entries

being misalignment errors). Since the accelerometer input axes nominally

coincide with the ISA system axes, the matrix Ca in Equation A-2 can be

replaced by C, which allows Equation A-2 to be written as

6V = C[K a + ba ] - _ x a (A-10)
a- a

*Q CONDITIONS FOR COMMUTATION OF GYRO ERRORS

Referring to Figure A-l, we see that the angular rotation vector of the ISA can

be expressed as

=a -,r (A-I)
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where:

Sa. nerotal frameb inrial rferen frame . Otrgmlrernc fae

=inner gimbal inertial rotation rate

and the inertial rotational rate about the axis perpendicular to the two gimbal

* axes is taken to be zero. The unit vector .x belongs to the triad (Rx, uy, Rz)

attached to the outer gimbal, and ur 3 belongs to the triad (Irl, ,r 2 , Ar3  that

-defines the ISA axes. If these two triads are assumed coincident at t=O. the
* subsequent transformation between them is defined by:
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r
u CA So 0 i
-x -1

ru = -so CA 0 12-y

u 0 0 1 r(A- 2)z -R(312

which allows the ISA rotation rate to be expressed as

•/ r + s r -SAR r(A-13)

If the inertial reference triad (uil, 2P 1i3) is also taken as being

0 coincident with the other two triads at t=0, the following is true.
SI

i

u 1 0 0 u
-x

i

u.m 0 Ca -Sa u-2 --y

i

u3  0 Sa Ca u z

Which, with Equation A-12, leads to the defining relationship for C:

r r
uCA~ SP3 0 uu

ir rA2 -CaS CaCP -S 2 C 2

U3  -SQSP SaCP Ca u r ur
i3 -3-3

Using Equations A-13 and A-14 the attitude error propagation equation (A-8),

can be expressed as

H.1 (A-15)
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7 V.-

where 1_ is the gyro error vector:

6 =(1 2  6 k k k b b bg) (A-16)
1 2" 2 g3  5118253

and the elements of the matrix H are given by:

m

hI. = } akfk(t) (A-17)

k=l

in which fk(t) is the k th of M time-dependent functions, and the ak's are

constants that are functions only of the elements of the transformation

matrix A.

If all sensor errors are assumed constant over time T, then Equation A-15 can

be directly integrated:

[T]
= f H(td Lg (A-18)

Furthermore, for T(T) to equal zero:

0f'T fk (t)dt = 0 k = 1, 2......M (A-19)

The integrals of the fk(t) that appear in the solution of the attitude error

vector T are defined in Table A-1, which shows that all of the functions to be

integrated depend only on the gimbal angles and rates. If the ISA inertial

rotation rates about the two gimbal axes are constant, all of the integrals can

be evaluated explicitly. As an example, one of the Table A-1 integrals is

evaluated as follows.
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TABLE A-1. INTEGRAL FUNCTIONS FOR ATTITUDE ERROR PROPAGATION

S fk(t)dt Acceptable Ratio of

JCossdt All n

fhtnodt All n

f Slrdt All n

10 ynaSinedt n

C2 osaS n dt Al l1 n

fS na~osodt All n The ratio (n) of inner to outer

,gimbal rates that prouces a

CosCos~dt n ¢Izero value of the integral over

"-- the period of the outer gimbal
f SnZdt All n otion

JsntSinadt n 1

fJCosaSnedt All n

*,s StnaCossdt All n

J CosCosadt A 1 n

f&sinzadt 
l n

k ~ jaycos adt No n

f&SinaSin Bdt 
All n

f cosaSin2dt All n

f ,SinaCos dt All n

&CosJ Sin2g dt All n
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TABLE A-1. INTEGRAL FUNCTIONS FORl ATTITUDE ERROR PROPAGATION (concluded)

f kdtAcceptable Ratio of
_________________ Gimbal Rates

fsCosedt All n

JSlneadt All n

sjainodt All n
C

J4 S~Cossdt All n

~~ JCs.Ca~lldt n1

0 -a ~CosaSinPt a*0nst~i All

-00

f~ aosa~i -2dt + Sia + 2o~ti Itd

4 ~Td fCt2tt

Now, assume that the inner gimbal rate is n times the outer gimbal rate, and

that the integration interval MT is equal to the outer gimbal period of

0 revolution. Then, the integral can be evaluated as
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2 4n(1-2n) (1+2n)

b 0 for all integer N

All except two integrals in Table A-1 reduce to zero over oneO outer gimbal

- period, for integer N. The two exceptions are

0fT ain Adt and 0T eCos Pdt

both of which give ;zT/2 over the period T. But, by reversing the outer gimbal

rate after each successive revolution of 3600, these two give zero net over

intervals of 2T. The periodic reversal of has another benefit as well; it

causes every integral that has a as a factor to have a mean value of zero

(providing that any restriction on the ratio of gimbal rates is observed). The

result is that attitude error will tend to be more nearly zero-mean, which in

turn produces a lower growth of velocity error through the '_ X a term.

CONDITIONS FOR COMM1UTATION OF ACCELEROMETER ERRORS

The velocity error expression is

6V We (A-20)

where Aa is a vector formed from the accelerometer errors (bias, scale factor,

misalignment), and the elements of the matrix W take the general form:

w k! bkgk(t) (A-21)
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in which gk(t) is the k Lh of N time-dependent functions, and the bk's are a

function of the components of nongravitational acceleration, a.

If all accelerometer errors are taken to be constant over an integration

interval T (the period of the outer gimbal motion), and if the components of

nongravitational acceleration are also essentially constant over T, Equation

A-20 has the solution:

6V(T) 0 [ofTW(t)d] La (A-22)

which produces a zero value if:

ofTgk(t)dt = 0 k = 1, 2, ...N

The integral functions that appear in the solution of the velocity error

equations are defined in Table A-2, some of which are the same as those

appearing in the attitude error equations. As can be seen from Table A-2, all

but eight of the integrals can be made to produce a zero value at the end of

each complete revolution of the outer gimbal. Nowever, since none of the

integrals associated with ;celerometer errors involve the outer gimbal rate,

reversal of the outer gimbal motion will not produce a zero value at the end of

2T. Therefore, the contribution to velocity error represented by these eight

terms will be generally monotonic. The accelerometer errors associated with

these integrals are scale factor and misalignment errors, and the integrals

are associated with error in the vertical direction (i.e., in the direction of

the gravity vector). Furthermore, the integrals:

fSin 2 aCos~dt fCos 2aCos~dt fSin2aSinpdt

will not produce a zero value over T if the ratio of inner gimbal to outer

gimbal rate (n) is 2. Therefore, an n value of 3 or higher should be used.
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TABLE A--2. INTEGRAL FUNTIONS FOR VELOCITY ERROR PROPAGATION

Acceptable Ratio

fgk(t)dt of Gimbal Rates

hine/t All n

f CoadtAll ni

Al ft

fCosit All ni

f SineSin~dt P jI1

f SlnaCosadt All n

-- ,!

CosSinedt All I

JCosaCosadt n ii 1

Sln2adt All ni

Sin21dt All n

f sin~adt No n

f cos2at No n

fSlnIdt 
No n

c osSd No n

f Stn2hSnldt All ni

f Sin 2 Cosodt n t 2 1

Co'Sinedt All I n

.~ ICosmCos Sdt n jI2

________ f SinmSin 2ldt All ni

* The ratio (n) of inner to outer gimbal rates that produces a zero

value of the Integral over the period of the outer gimbal motion
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C. 7..

TABLE A-2. INTEGRAL FUNCTIONS FOR VE~oCTY ERROR PROPAGATION (concluded)

Acceptable Ratio

fgt~t~dtof Gimal Rates

fcas~sin 8t All n

JPlnsaos 2adt All n

jCOSOc0s2 adt Allin

fSin2aSingdt a0 2

I Jin2mcosedt All n

JSinSin~edt All nt

JCos*Sin2sdt All n

Sin2,CS214tNo n

J~Cos dt No n

! j Cos2ajCs20dt No n

"Z 'A JcSI 2*i dt Alln
- 3-

JC0s2u.Sln25dt All n

J Sln2mSln26dt All n

in2*Cs IdtAll n
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NAV IGATION ERROR MODEL
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APPENDIX B

NAVIGATION RROR MODEL

The navigation error equations used as the basis for performance analysis are

defined in this appendix, together with a discretization procedure for

representing the error model in the form of difference equations.

The navigation error model assumed is a ' '-angle' formulation, which is a

classic set of navigation error equations applied to either strapdown or

platform systems. The 'i'-angle' error model may be expressed in the

following form:

4 e- (P+ ix (+-i)
S-g

V= a - _ • AL -(2p_ + p) x 6 - &R

2+ 3w (6R'A/R)!/R + 6(-2)

6i = 6 - 6R (B-3)

where:

= attitude error vector

by = velocity error vector

6R = position error vector

g= angular velocity vector of local vertical reference frame relative to

an earth-fixed frame

U = angular velocity vector of the earth relative to an inertial frame

AL = vehicle nongravitational acceleration

R - radius vector from earth's center to vehicle

R - magnitude of It

Ws  Schuler frequency = 4g/
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IS - gyro output error vector

= accelerometer output error vector

& = gravity error

and it is assumed that all vectors are expressed with components in a

local-vertical navigational reference frame.

The total gyro and accelerometer error vectors are expressed in terms of

individual sensor errors as

is= - (B-4)

WAXa (B-5)

* where:

=vector of gyro errors (bias plus random noise)

!a = vector of accelerometer errors (bias plus random noise)

C = transformation matrix relating inertial sensor assembly

reference frame to the local-vertical frame

G = coefficient matrix that transforms the collection of accelerometer

errors into a net acceleration error in the sensor assembly reference

f rame

H = coefficient matrix that transforms the collection of gyro errors

into a net angular rate error in the sensor assembly reference frame
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If the inertial navigator is strapdown, then C is defined to be the direction

cosine matrix relating the vehicle body axes to the local-vertical frame. If

the inertial navigator is of the platform type, the matrix C is the identity

matrix. Thus, Equations B-i through B-5 are applicable to both types of

navigation system, with the appropriate choice for the matrix C. The inertial

navigation system error equations given by Equations B-i through B-5 can be

conveniently expressed in the generalized partitioned form:[2 ;~1[1 + [ 22] 2:
where:

Y = vector of navigation errors

X = vector of sensor errors

It is desirable to discretize Equation B-6 in the partitioned form:

-Yn l-n-1 12 n-1 +
n

Xk_ '22n-1 + C2
n

where:

41 and 42 are appropriate noise vectors.

The discretization of the sensor states normally presents no problem since it

is commonly assumed that sensor errors are adequately represented by either of

the following two forms

-bb = (first-order Gauss-Markov process)

b = (random walk)
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where:

b = sensor bias

v = correlation time of process

= white noise

-, If the sensor error is a first-order Gauss-Markov process, the discrete

transition and noise variance parameters (4,') are given by:

0= e-t/'C

r= 62( 1 -e..-2t/r)

where a is the steady-state standard deviation, and T is the transition time.

When the sensor error follows a random walk type variation, the parameters are

r = Nt

* where N is the spectral intensity of the white noise function, i and is

*' expressed in convenient units as

N(tandard deviation of chanse 1 hou)2

The navigation error transition matrix can be discretized by using a Piccard-

type expansion and then solving by numerical integration. The result is given

in Tables B-1 and B-2 for a comprehensive set of sensor errors. If, as in this

case, the gyro and accelerometer aisalignments (non-orthogonalities) are given

as constant random errors, only nine misalignment angles need be defined.

Either the gyro triad or the accelerometer triad may be designated as
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the ''reference'' triad and assigned three misalignment angles, with six

misalignment angles for the remaining triad. In this study, the gyros have six

misalignment angles, and the accelerometers have three.

The discretization algorithms in Tables B-i and B-2 are valid over times that

are small compared to the Schuler period and the sensor correlation times. The

transition and noise matrixes can be extended over any time by the chain rules:

n 1i0 n P(tn-i' 0

r(tt o) =)nr(tn t o )(0
T +r

no 0 n nit 0n nf

where:

(On = incremental transition matrix for interval tni to tn

rn = incremental noise covariance matrix for interval tni to tn

The covariance matrix, P, of the error states can be reconstructed at any time

from:

Pn 0(tnto)Po4T (tn, to) + r(tn, to)

The error model defined by Equations B-i through B-5 also applies, with minor

modification, to alignment and calibration. The principal difference is that

6R is a fixed error and has no variation with time. Also, since the error

equations presume small angles, a coarse level and azimuth alignment is implied

as a prerequisite for their use.
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In addition to the sensor biases, the navigation error equations are driven by
two additional sources of random error: 1) sensor random noise, and 2) gravity
errors. These additional error sources are accounted for by means of the
incremental noise covariance matrix defined in Table B-3. The white noise
originating from the gyros. as characterized by the spectral intensity matrix1 N., leads to the attitude random walk. The white noise originating from the
accelerometers (absent in the present application) is characterized by the
spectral intensity matrix N. in Table 8-3.
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TABLE B-3. NAVIGATION STATES NOISE CDVAIANCE MATRIX

V6R

V) q1, fCNgCTdt q12 = fq11ATdt q13 = fq12dt
'4.

6V q22 = fAq12dt q23  13

q21 = qT + dt)T dt
12(fAq 12dt+ fq22 t

+ (Na + Nv)t

6R q33  fq23dt

q31  q 3  q32  q 3  + (fq23dt)

N = Spectral intensity matrix of gyro white noiseg

Na = Spectral intensity matrix of accelerometer white noise

N = Spectral intensity matrix of white noise originating in local-v

vertical frame due to gravity errors

C = Sensor to local vertical transformation matrix

o L L
0-3  2

A =aL 0 -aL
3 1

-a L a L 02 1

aL, a2, aL = local-vertical components of nongravitational acceleration
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APPENDIX C

SENSOR QUANTIZATION ERROR MODEL
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APPENDIX C

SENSOR QUANTIZATION ERROR MODEL

The discrete output of inertial instruments causes an error due to

quantization. That is, if the true integral of the sensed rate or

acceleration over a given iteration interval is not equal to an integer number

of pulses, the fractional pulse will be ''saved'' and output over the next

interval. No fractional pulses are ever lost and the output of the instruments

could be accumulated indefinitely, with a maximum error of one pulse. This

property povides the basis for mathematically defining quantization error.

Define the quantization error over the nth iteration interval as qn. Also,

define the accumulated quantization error as Tin. Then:

An= In-l + qn (C-i)

The cumulative quantization error, An, constitutes a random uncorrelated

sequence with uniform distribution. Rearranging Equation C-i, the quantization

error over the ,.th iteration interval is expressed as

qn = An - An-l (C-2)

Thus, quantization error is characterized as the difference between two

successive members of a random independent set.

ATTITUDE ERROR DUE 70 GYRO QUANTIZATION

Consider attitude error in a rotational environment with the gyros skewed. The

attitude matrix differential equation for this case is
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-, W- -V. Wr r

C- C (A*) (C-3)

where:

C - orthogonal direction cosine matrix

A - transformation matrix from skewed sensor axes to a set of orthogonal

sensor reference axes

w - angular rate measured by gyros

and (.v denotes a skew-symmetric matrix formed from the components of a

vector v.

The discrete algorithm for updating Equation C-3 is

Cn -~ +(AO) + 2i§2.. (C-4)
n --

where:

tt
;i0 = adt ( C-5 )

n-i

Directly from Equation C-4. the error in C is

6c 6C + (AO) + 2(A ) 2+

+ C -A60 + 2 (A6b_) (A) + 1-(AO} (A6O_)+ (C-6)

L 2

where jQ is the error in the incremental gyro output defined by Equation C-S.

Since gyro quantization error can only cause a rotational error, the erroneous

C matrix can be expressed as

C 1 L~ )Cn (C-7)
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where:

=misalignment angle vector

C=erroneous C Matrix

From Equation C-7, the error in C can be expressed as

6C -('IV)C (C-8)
n -nn

Substituting Equations C-8 and C-4 into C-6 results in:

C 14 )C 1  + [A2) + + ..i1
*- IC[,k(A) + (iAe) 2+.[Aag) + ~I (A A) + PA-(e)+. C9

Using the identity:

and neglecting higher-order terms, Equation C-9 reduces to:

=() 'Pn-i-l Cn A60 l/2(fA..)A6 jC nT (C-10)

which. in vector form, is expressed as

tIn I! n-1 CFnA6e (C-il)

-'where Cn is defined as

and may be taken to be the true value of C at the midpoint of the interval.
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Equation C-l defines a generalized recursive relationship for attitude error

propagation which, when 60 represents gyro quantization error, takes the

specific form:

'n = -- -CA( %-1) (C-12)

Equation (C-12) can be expanded as

n = AL

+C2A'-[(C2 -Cl) +L] A,

ZC3 n3-[( 3 C2) Z]2

+CA3.ug[(C -i )+] An._,

which, after cancellations, reduces to:

n-I
'V CAMn - Z Aaii (C-13)i=1

where:

ACi- = i Ci-1

The covariance of 'V is determined directly from Equation C-13 as
n-iT

E( V 'VAT) A CT 2  + EACiA AT AC (C-14)

where:

2 T
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Equation C-14 indicates that gyro quantization produces a bounded attitude

error (first term), plus an unbounded error component (second term). The

* unbounded component will $row at a rate proportional to the rotational velocity

of the gyro triad.

Another form for expressing attitude error growth, which is more convenient for

covariance analysis, is given by the equation set:

-C n A n +uW-i

(C-1s)

in -n-i A nA-

which is simply a rearrangement of Equation C-13 with the summation expressed

recursively.

* VELOCITY ERROR DUE TO GYRO AND ACCELEROMETER QUANTIZATION

* The computed direction cosine matrix, C, is used to transform accelerations

measured in the accelerometer axes into components in the reference frame:

V=Ca (C-16)

where:

* V = velocity in reference frame

a = measured acceleration in sensor frame,

*It is assumed that the accelerometers form an orthogonal triad that coincides

4 with the orthogonal gyro reference axes.

* 108



A discrete algorithm for updating Equation C-16 is

C v (C-i17)

where in is the increumental accelerometer output, and F is the direction cosine

matrix at the midpoint of the computational interval. The error incurred in

accumulating velocity is

f n -n-y n- n + Ccvn &

It n n -n

ma! - x r +C 62In-I -u 'n n -n

B6n_ + vx r P + Z 6v (C-18)

* where:

r
-n nn

and where the misalignment vector 'Pis defined as

AL -n 1

which, for all practical purposes, is accurately approximated by 'in -

* Equation C-1S can be decomposed into two parts (to separate the contributions

due to gyro and accelerometer quantization errors) as follows.

6 a +C6v 
(-9

-Y; n -, n - t C 9

by~ ya + (V (C20

- n -n(C20
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Thus, the effect of accelerometer quantization on velocity error has exactly

the same form as the effect of gyro quantization error on attitude error. The

only difference is that, because the gyros are taken to be skewed, the attitude

error equation involves the transformation matrix A. By omitting A and making

the substitution (6aP!) Equations C-13, C-14, and C-iS are immediately

applicable to accelerometer quantization error propagation.

The complete model of gyro and accelerometer quantization effects is summarized

in Figure C-1. The model is recursive and operates at the attitude and

velocity update frequency.

COVARIANCE ANALYSIS MODEL FOR PROPAGATION OF QUANTIZATION ERRORS

For covariance analysis, we need to express the effect of sensor quantization

error over periods of time much longer than the iteration interval of the

update equations. The covariance matrix can be determined by solving the

discrete covariance equation

-k

-kI

T - ATTITUDE AND VELOCITY UPDATE INTERVAL

74. 7 - UNCORRELATED NOISE SEUENCES

Figure C-I. Deterministic Model of Quantization-Induced Error
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4,.

!p pu T+Q (C-21)

for the error model defined by Figure C-i. The evaluation of Equation C-21 is

straightforward and results in the solution given in Figure C-2. For

convenience, the summations can be replaced by continuous integrations,

assuming that the variations in vr are relatively smooth. Then, we can write:

n-iT t-T T
C ACAT AC Tf CAACdt

k=1i K 0

t-T T TT
=Tf C(A&I)AA (Aw) C dt

where T is the update interval.

The covariance solution given by Figure C-2 defines the variances and cross

covariances of the errors due to sensor quantization over any length of time.

In practice, the solution is carried out only over periods of time equal to the

" discretization interval of the error equations. The noise covariance matrices

E(Q*T), E(! 6vT), and E(6V6VT) then provide the statistical description of a

discrete uncorrelated input to the navigation error equations over the

interval. After each successive discretization interval, the solution inherent

in Figure C-2 is started anew.
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